

joeflow

The lean workflow automation framework for machines with heart.

[image: a hand drawn robot]
Joeflow is a free workflow automation framework designed to bring simplicity
to complex workflows. Joeflow written in Python [https://python.org] based on the world famous
Django [https://www.djangoproject.com/] web framework.

Here is a little sample of what a workflow or process written with joeflow
may look like:

digraph {
 graph [rankdir=LR]
 node [fillcolor=white fontname="sans-serif" shape=rect style=filled]
 checkout [color=black fontcolor=black style="filled, rounded"]
 "has email" [color=black fontcolor=black style=filled]
 ship [color=black fontcolor=black style="filled, rounded"]
 end [color=black fontcolor=black style=filled peripheries=2]
 "send tracking code" [color=black fontcolor=black style=filled]
 checkout -> ship
 ship -> "has email"
 "has email" -> "send tracking code"
 "has email" -> end [color="#888888"]
 "send tracking code" -> end
}

from django.core.mail import send_mail
from jowflow.models import Workflow
from joeflow import tasks

class Shipment(Workflow):
 email = models.EmailField(blank=True)
 shipping_address = models.TextField()
 tracking_code = models.TextField()

class ShippingWorkflow(Shipment):
 checkout = tasks.StartView(fields=["shipping_address", "email"])

 ship = tasks.UpdateView(fields=["tracking_code"])

 def has_email(self, task):
 if self.email:
 return [self.send_tracking_code]

 def send_tracking_code(self):
 send_mail(
 subject="Your tracking code",
 message=self.tracking_code,
 from_email=None,
 recipient_list=[self.email],
)

 def end(self):
 pass

 edges = [
 (checkout, ship),
 (ship, has_email),
 (has_email, send_tracking_code),
 (has_email, end),
 (send_tracking_code, end),
]

 class Meta:
 proxy = True

Design Principles

Common sense is better than convention

Joeflow does not follow any academic modeling notation developed by a poor PhD
student who actually never worked a day in their life. Businesses are already
complex which is why Joeflow is rather simple. There are only two types of
tasks – human & machine – as well as edges to connect them. It’s so simple a
toddler (or your CEO) could design a workflow.

Lean Automation (breaking the rules)

Things don’t always go according to plan especially when humans are involved.
Even the best workflow can’t cover all possible edge cases. Joeflow
embraces that fact. It allows uses to interrupt a workflow at any given point
and modify it’s current state. All while tracking all changes. This allows
developers to automate the main cases and users handle manually exceptions.
This allows you businesses to ship prototypes and MVPs of workflows.
Improvements can be shipped in multiple iterations without disrupting the
business.

People

Joeflow is build with all users in mind. Managers should be able to develop
better workflows. Users should able to interact with the tasks every single
day. And developers should be able to rapidly develop and test new features.

Free

Joeflow is open source and collaboratively developed by industry leaders in
automation and digital innovation.

All Contents

Contents:

	Tutorial
	Writing your first Workflow

	Creating templates

	Testing your workflow

	Core Components
	Workflow

	Task

	Edges

	Advanced Workflow API

	Tasks
	Human

	Machine

	Settings

	Management Commands
	render_workflow_graph

	URLs

Photo by rawpixel.com from Pexels

Tutorial

The following tutorial should give you a quick overview on how to write a
workflow, integrate it into your Django application and write robust and
automated tests.

Before we get started make you you have the package installed. Simply install
the PyPi package…

python3 -m pip install "joeflow[reversion,dramatiq,celery]"

…and add joeflow to the INSTALLED_APP setting. You will also need to have
celery setup.

See also

If you don’t have celery setup yet, simply follow their setup instructions
for Django projects.

https://celery.readthedocs.io/en/latest/django/first-steps-with-django.html

Once the setup is completed you can get started writing your first workflow!

Contents:

	Writing your first Workflow

	Creating templates

	Testing your workflow

Writing your first Workflow

As an example we will create a simple workflow that sends a welcome email to a
user. A human selects the user (or leaves the field blank). If the user is set
a welcome emails is being sent. If the user is blank no email will be send and
the workflow will end right way.

digraph {
 graph [rankdir=LR]
 node [fillcolor=white fontname="Georgia, serif" shape=rect style=filled]
 start [color=black fontcolor=black style="filled, rounded"]
 "send welcome email" [color=black fontcolor=black style=filled]
 end [color=black fontcolor=black style=filled]
 "has user" [color=black fontcolor=black style=filled]
 start -> "has user"
 "has user" -> end
 "has user" -> "send welcome email"
 "send welcome email" -> end
}

Let’s start with the data structure or workflow state. We need a model that can
store a user. Like so:

from django.conf import settings
from joeflow.models import Workflow

class WelcomeWorkflowState(Workflow):
 user = models.ForeignKey(
 settings.AUTH_USER_MODEL,
 on_delete=models.CASCADE,
 blank=True, null=True,
)

We keep the model abstract. The abstract model will make it easier to separate
state from behavior and therefore easier to read for your fellow developers.

Next we add the behavior:

from joeflow import tasks

from . import models

class WelcomeWorkflow(models.WelcomeWorkflowState):
 start = tasks.StartView(fields=["user"])

 def has_user(self):
 if self.user:
 return [self.send_welcome_email]
 else:
 return [self.end]

 def send_welcome_email(self):
 self.user.email_user(
 subject="Welcome", message="Hello %s!" % self.user.get_short_name(),
)

 def end(self):
 pass

 edges = [
 (start, has_user),
 (has_user, end),
 (has_user, send_welcome_email),
 (send_welcome_email, end),
]

 class Meta:
 proxy = True

We have the tasks start, has_user send_welcome_email and end
on the top and define all the edges on the bottom. Edges are defined by a
set of tuples. Edges are directed, meaning the first item in the tuple is
the start tasks and the second item the end tasks.

Note that the has_user task has two different return values. A task
can return a list of following or child tasks. This is how your workflow
can take different paths. If there is no return value, it will simply
follow all possible edges defined in edges.

The end task, does not really do anything. It is also not really needed.
It is just added for readability and could be omitted. Any tasks that does
not have a child task defined in edges or returns an empty list is
considered a workflow end.

To make your workflow available to users you will need to add the workflow URLs
to your urls.py:

from django.urls import path, include

from . import workflows

urlpatterns = [
 # …
 path('welcome/', include(workflows.WelcomeWorkflow.urls())),
]

This will add URLs for all human tasks as well as a detail view and manual
override view. We will get to the last one later.

That it all the heavy lifting is done. In the next part of tutorial you will
learn
how to integrate the tasks into your templates.

Creating templates

Your human tasks, like your start view will need a template. The template
name is similar as it is for a
CreateView [https://docs.djangoproject.com/en/stable/ref/class-based-views/generic-editing/#django.views.generic.edit.CreateView] but with more
options. Default template names are:

app_name/welcomeworkflow_start.html
app_name/welcomeworkflow_form.html
app_name/workflow_form.html

Django will search for a template precisely that order. This allows you to
create a base template for all human tasks but also override override them
individually should that be needed.

Following the example please
create a file named app_name/workflow_form.html in your template folder.
The app_nam should be replaced by the application name in which you crated
your Welcome workflow. Now fill the file with a simple form template:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Welcome Workflow</title>
</head>
<body>
 <form method="POST">
 {% csrf_token %}
 {{ form }}
 <input type="submit">
 </form>
</body>
</html>

Of course you can make it prettier, but this will work.

Besides the tasks a workflow comes with two more views by default. A workflow
detail view and a view to manually override the current workflow state.

The manual override view will also use the workflow_form.html template
that you have already created. You can of course create a more specific
template. Django will search for templates in the following order:

app_name/welcomeworkflow_override.html
app_name/workflow_override.html
app_name/welcomeworkflow_form.html
app_name/workflow_form.html

Last but not least you will need a template for the workflow detail view.
You don’t really need to add anything here, but lets add a little information
to make your workflow feel more alive.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Welcome Workflow</title>
</head>
<body>
 {{ object.get_instance_graph_svg }}
 <h1>{{ object }}</h1>
 <table>
 <thead>
 <tr>
 <th>id</th>
 <th>task name</th>
 <th>completed</th>
 </tr>
 </thead>
 <tbody>
 {% for task in object.task_set.all %}
 <tr>
 <td>{{ task.pk }}</td>
 <td>
 {% if task.get_absolute_url %}

 {{ task.name }}

 {% else %}
 {{ task.name }}
 {% endif %}
 </td>
 <td>{{ task.completed }}</td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
 Override
</body>
</html>

You are all set! Spin up your application and play around with it.
Once you are done come back to learn
how to write tests in the next part of our tutorial.

Testing your workflow

Joeflow is designed to make testing as simple as possible. Machine tasks are
the simplest to test. You just call the method on the workflow. Following our
example, your tests could looks something like this:

from django.contrib.auth import get_user_model
from django.core import mail
from django.test import SimpleTestCase, TestCase
from django.urls import reverse

from . import workflows

class WelcomeWorkflowMachineTest(SimpleTestCase):
 def test_has_user__with_user(self):
 user = get_user_model()(
 email="spiderman@avengers.com",
 first_name="Peter",
 last_name="Parker",
 username="spidy",
)
 workflow = workflows.WelcomeWorkflow(user=user)
 self.assertEqual(workflow.has_user(), [workflow.send_welcome_email])

 def test_has_user__without_user(self):
 workflow = workflows.WelcomeWorkflow()
 self.assertEqual(workflow.has_user(), [workflow.end])

 def test_send_welcome_email(self):
 user = get_user_model()(
 email="spiderman@avengers.com",
 first_name="Peter",
 last_name="Parker",
 username="spidy",
)
 workflow = workflows.WelcomeWorkflow(user=user)

 workflow.send_welcome_email()

 email = mail.outbox[-1]
 self.assertEqual(email.subject, "Welcome")
 self.assertEqual(email.body, "Hello Peter!")
 self.assertIn("spiderman@avengers.com", email.to)

The tests above a regular unit tests covering the machine tasks. Testing the
human tasks is similarly simple. Since machine tasks are nothing but views
you can use Django’s test Client [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.Client]. Here an
example:

class WelcomeWorkflowHumanTest(TestCase):
 start_url = reverse("welcomeworkflow:start")

 def test_start__get(self):
 response = self.client.get(self.start_url)
 self.assertEqual(response.status_code, 200)

 def test_start__post_with_user(self):
 user = get_user_model().objects.create(
 email="spiderman@avengers.com",
 first_name="Peter",
 last_name="Parker",
 username="spidy",
)

 response = self.client.post(self.start_url, data=dict(user=user.pk))
 self.assertEqual(response.status_code, 302)
 workflow = workflows.WelcomeWorkflow.objects.get()
 self.assertTrue(workflow.user)
 self.assertTrue(workflow.task_set.succeeded().filter(name="start").exists())

 def test_start__post_without_user(self):
 response = self.client.post(self.start_url)
 self.assertEqual(response.status_code, 302)
 workflow = workflows.WelcomeWorkflow.objects.get()
 self.assertFalse(workflow.user)
 self.assertTrue(workflow.task_set.succeeded().filter(name="start").exists())

Note that the start task is somewhat special, since it does not need a
running workflow. You can test any other task by simply creating the
workflow and task in during test setup. In those cases you will need
pass the task primary key. You can find more information about this
in the URLs documentation.

Core Components

Workflow

The Workflow is where all your components come together.
It defines the flow overall flow and the different states of your workflow.
Workflow are also the vehicle for the other two components Tasks and
edges.

It combines both behavior and state using familiar components.
The state is persisted via a Django Model for each
instance of your workflow.

Task

A task defines the behavior of a workflow. It can be considered as a simple
transaction that changes state of a workflow. There are two types of tasks,
human and machine tasks.

Human tasks are represented by a Django View [https://docs.djangoproject.com/en/stable/ref/class-based-views/flattened-index/#View]. A user can change the workflows
state via a Django form or a JSON API.

Machine tasks are represented by simple methods on the Workflow class. They
can change the state and perform any action you can think of. They can decide
which task to execute next (exclusive gateway) but also start or wait for multiple
other tasks (split/join gateways).

Furthermore tasks can implement things like sending emails or fetching data
from an 3rd party API. All tasks are executed asynchronously to avoid blocking
IO and locked to prevent raise conditions.

Edges

Edges are the glue that binds tasks together. They define the transitions
between tasks. They are represented by a simple list of tuples. Edges have no
behavior but define the structure of a workflow.

Advanced Workflow API

	
class joeflow.models.Workflow(*args, **kwargs)[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/models.py#L55-L334]

	Bases: django.db.models.base.Model

The WorkflowState object holds the state of a workflow instances.

It is represented by a Django Model. This way all workflow states
are persisted in your database.

	
get_absolute_url()[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/models.py#L177-L181]

	Return URL to workflow detail view.

	
classmethod get_graph_svg()[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/models.py#L216-L239]

	Return graph representation of a model workflow as SVG.

The SVG is HTML safe and can be included in a template, e.g.:

<html>
<body>
<!--// other content //-->
{{ workflow_class.get_graph_svg }}
<!--// other content //-->
</body>
</html>

	Returns

	SVG representation of a running workflow.

	Return type

	(django.utils.safestring.SafeString [https://docs.djangoproject.com/en/stable/ref/utils/#django.utils.safestring.SafeString])

	
get_instance_graph_svg(output_format='svg')[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/models.py#L307-L329]

	Return graph representation of a running workflow as SVG.

The SVG is HTML safe and can be included in a template, e.g.:

<html>
<body>
<!--// other content //-->
{{ object.get_instance_graph_svg }}
<!--// other content //-->
</body>
</html>

	Returns

	SVG representation of a running workflow.

	Return type

	(django.utils.safestring.SafeString [https://docs.djangoproject.com/en/stable/ref/utils/#django.utils.safestring.SafeString])

	
get_override_url()[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/models.py#L183-L187]

	Return URL to workflow override view.

	
classmethod urls()[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/models.py#L114-L160]

	Return all URLs to workflow related task and other special views.

Example:

from django.urls import path, include

from . import models

urlpatterns = [
 # …
 path('myworkflow/', include(models.MyWorkflow.urls())),
]

	Returns

	Tuple containing aw list of URLs and the workflow namespace.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple](list [https://docs.python.org/3/library/stdtypes.html#list], str [https://docs.python.org/3/library/stdtypes.html#str])

	
class joeflow.models.Task(id, _workflow, content_type, name, type, status, completed_by_user, created, modified, completed, exception, stacktrace)[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/models.py#L377-L583]

	Bases: django.db.models.base.Model

	
enqueue(countdown=None, eta=None)[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/models.py#L526-L554]

	Schedule the tasks for execution.

	Parameters

	
	countdown (int [https://docs.python.org/3/library/functions.html#int]) – Time in seconds until the time should be started.

	eta (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – Time at which the task should be started.

	Returns

	Celery task result.

	Return type

	celery.result.AsyncResult [https://docs.celeryproject.org/en/stable/reference/celery.result.html#celery.result.AsyncResult]

	
start_next_tasks(next_nodes: list = None)[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/models.py#L556-L583]

	Start new tasks following another tasks.

	Parameters

	
	self (Task) – The task that precedes the next tasks.

	next_nodes (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of nodes that should be executed next. This argument is
optional. If no nodes are provided it will default to all
possible edges.

Tasks

A task defines the behavior or a workflow.

A task can be considered as a simple transaction that changes state of a workflow.
There are two types of tasks, human and machine tasks.

Human

Human tasks are represented by a Django View [https://docs.djangoproject.com/en/stable/ref/class-based-views/base/#django.views.generic.base.View].

A user can change the workflows state via a Django form or a JSON API.
Anything you can do in a view you can do in a human task. They only
difference to machine tasks is that they require some kind of interaction.

You can use view mixins like the
PermissionRequiredMixin [https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.mixins.PermissionRequiredMixin]
or
LoginRequiredMixin [https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.mixins.LoginRequiredMixin]
to create your own tasks that are only available to certain users.

Generic human tasks

Set of reusable human tasks.

	
class joeflow.tasks.human.StartView(**kwargs)[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/tasks/human.py#L12-L22]

	Start a new workflow by a human with a view.

Starting a workflow with a view allows users to provide initial data.

Similar to Django’s CreateView [https://docs.djangoproject.com/en/stable/ref/class-based-views/generic-editing/#django.views.generic.edit.CreateView]
but does not only create the workflow but also completes a tasks.

	
class joeflow.tasks.human.UpdateView(**kwargs)[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/tasks/human.py#L25-L33]

	Modify the workflow state and complete a human task.

Similar to Django’s UpdateView [https://docs.djangoproject.com/en/stable/ref/class-based-views/generic-editing/#django.views.generic.edit.UpdateView]
but does not only update the workflow but also completes a tasks.

Machine

Machine tasks are represented by simple methods on the Workflow class.

They can change the state and perform any action you can think of. They can
decide which task to execute next (exclusive gateway) but also start or wait
for multiple other tasks (split/join gateways).

Furthermore tasks can implement things like sending emails or fetching data
from an 3rd party API. All tasks are executed asynchronously to avoid blocking
IO and locked to prevent raise conditions.

Return values

Machine tasks have three different allowed return values all of which will
cause the workflow to behave differently:

	None:

	If a task returns None or anything at all the workflow will just
proceed as planed and follow all outgoing edges and execute the next
tasks.

	Iterable:

	A task can return also an explicit list of tasks that should be executed
next. This can be used to create exclusive gateways:

from django.utils import timezone
from joeflow.workflows import Workflow
from joeflow import tasks

class ExclusiveWorkflow(Workflow):
 start = tasks.Start()

 def is_workday(self):
 if timezone.localtime().weekday() < 5:
 return [self.work]
 else:
 return [self.chill]

 def work(self):
 # pass time at the water cooler
 pass

 def chill(self):
 # enjoy life
 pass

 edges = (
 (start, is_workday),
 (is_workday, work),
 (is_workday, chill),
)

A task can also return am empty list. This will cause the workflow branch
to come to a halt and no further stats will be started.

Warning

A task can not be a generator (yield results).

	False:

	A task can also return a boolean. Should a task return False the
workflow will wait until the condition changes to True (or anything but
False):

from joeflow import tasks
form joeflow.workflows import Workflow
from django.utils import timezone

class WaitingWorkflow(Workflow):
 start = tasks.Start()

 def wait_for_weekend(self):
 return timezone.now().weekday() >= 5

 def go_home(self):
 # enjoy life
 pass

 edges = (
 (start, wait_for_weekend),
 (wait_for_weekend, go_home),
)

Exceptions

Should a task raise an exception the tasks will change it status to failed.
The exception that caused the task to fail will be recorded on the task
itself and further propagated. You can find and rerun failed tasks form
Django’s admin interface.

Generic machine tasks

Set of reusable machine tasks.

	
class joeflow.tasks.machine.Start[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/tasks/machine.py#L20-L56]

	Start a new function via a callable.

Creates a new workflow instance and executes a start task.
The start task does not do anything beyond creating the workflow.

Sample:

from django.db import models
from joeflow.models import Workflow
from joeflow import tasks

class StartWorkflow(Workflow):
 a_text_field = models.TextField()

 start = tasks.Start()

 def end(self):
 pass

 edges = (
 (start, end),
)

workflow = StartWorkflow.start(a_text_field="initial data")

	
class joeflow.tasks.machine.Join(*parents)[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/tasks/machine.py#L59-L116]

	Wait for all parent tasks to complete before continuing the workflow.

	Parameters

	*parents (str [https://docs.python.org/3/library/stdtypes.html#str]) – List of parent task names to wait for.

Sample:

from django.db import models
from joeflow.models import Workflow
from joeflow import tasks

class SplitJoinWorkflow(Workflow):
 parallel_task_value = models.PositiveIntegerField(default=0)

 start = tasks.Start()

 def split(self):
 return [self.batman, self.robin]

 def batman(self):
 self.parallel_task_value += 1
 self.save(update_fields=['parallel_task_value'])

 def robin(self):
 self.parallel_task_value += 1
 self.save(update_fields=['parallel_task_value'])

 join = tasks.Join('batman', 'robin')

 edges = (
 (start, split),
 (split, batman),
 (split, robin),
 (batman, join),
 (robin, join),
)

	
class joeflow.tasks.machine.Wait(duration: datetime.timedelta)[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/tasks/machine.py#L119-L160]

	Wait for a certain amount of time and then continue with the next tasks.

	Parameters

	duration (datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]) – Time to wait in time delta from creation of task.

Sample:

import datetime

from django.db import models
from joeflow.models import Workflow
from joeflow import tasks

class WaitWorkflow(Workflow):
 parallel_task_value = models.PositiveIntegerField(default=0)

 start = tasks.Start()

 wait = tasks.Wait(datetime.timedelta(hours=3))

 def end(self):
 pass

 edges = (
 (start, wait),
 (wait, end),
)

Settings

	
class joeflow.conf.JoeflowAppConfig(**kwargs)[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/conf.py#L7-L32]

	List of available settings.

To change the default values just set the setting in your settings file.

	
JOEFLOW_CELERY_QUEUE_NAME = 'yoloflow'[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/conf.py#L7-L32]

	Queue name in which all machine tasks will be queued.

	
JOEFLOW_TASK_RUNNER = 'joeflow.runner.celery.task_runner'[source] [https://github.com/codingjoe/joeflow/blob/master/joeflow/conf.py#L7-L32]

	Task runner is used to execute machine tasks.

JoeFlow supports two different asynchronous task runners – Dramatiq [https://dramatiq.io/] and Celery [http://www.celeryproject.org/].

To use either of the task runners change this setting to:

	joeflow.runner.dramatiq.task_runner

	joeflow.runner.celery.task_runner

Management Commands

render_workflow_graph

Render workflow graph to file:

usage: manage.py render_workflow_graph [-h] [-f {svg,pdf,png}] [-d DIRECTORY]
 [-c] [model [model ...]]

Render workflow graph to file.

positional arguments:
 workflow List of workflow to render in the form
 app_label.workflow_name

optional arguments:
 -h, --help show this help message and exit
 -f {svg,pdf,png}, --format {svg,pdf,png}
 Output file format. Default: svg
 -d DIRECTORY, --directory DIRECTORY
 Output directory. Default is current working
 directory.
 -c, --cleanup Remove dot-files after rendering.

URLs

Should you ever need to get the URL – like for a test – for a task you can use
Django’s reverse [https://docs.djangoproject.com/en/stable/ref/urlresolvers/#django.urls.reverse]. All users follow a simple
pattern consisting of the workflow name (lowercase) and task name, e.g.:

>>> from django.urls import reverse
>>> reverse("workflow_name:task_name", args=[task.pk])
'/url/to/workflow/task/1'

All task URLs need the .Task primary key as an argument. There are some
special views that do not like the workflow detail and override view, e.g.:

>>> reverse('welcomeworkflow:start')
'/welcome/start/'
>>> reverse('welcomeworkflow:detail', args=[workflow.object.pk])
'/welcome/1/'
>>> reverse('welcomeworkflow:override', args=[workflow.object.pk])
'/welcome/1/override'

The first example does not need a primary key, since it is a
StartView and the workflow is not created yet. The latter two
examples are workflow related views. The need the WorkflowState primary key
as an argument.

Note

The workflow detail view is also available via
Workflow.get_absolute_url(). The override view is available via
Workflow.get_override_url().

 Python Module Index

 j

 		 	

 		
 j	

 	[image: -]
 	
 joeflow	

 	
 	
 joeflow.management.commands	

 	
 	
 joeflow.tasks	

 	
 	
 joeflow.tasks.human	

 	
 	
 joeflow.tasks.machine	

Index

 E
 | G
 | J
 | S
 | T
 | U
 | W

E

 	
 	enqueue() (joeflow.models.Task method)

G

 	
 	get_absolute_url() (joeflow.models.Workflow method)

 	get_graph_svg() (joeflow.models.Workflow class method)

 	
 	get_instance_graph_svg() (joeflow.models.Workflow method)

 	get_override_url() (joeflow.models.Workflow method)

J

 	
 	joeflow.management.commands (module)

 	joeflow.tasks (module)

 	joeflow.tasks.human (module)

 	joeflow.tasks.machine (module)

 	
 	JOEFLOW_CELERY_QUEUE_NAME (joeflow.conf.JoeflowAppConfig attribute)

 	JOEFLOW_TASK_RUNNER (joeflow.conf.JoeflowAppConfig attribute)

 	JoeflowAppConfig (class in joeflow.conf)

 	Join (class in joeflow.tasks.machine)

S

 	
 	Start (class in joeflow.tasks.machine)

 	
 	start_next_tasks() (joeflow.models.Task method)

 	StartView (class in joeflow.tasks.human)

T

 	
 	Task (class in joeflow.models)

U

 	
 	UpdateView (class in joeflow.tasks.human)

 	
 	urls() (joeflow.models.Workflow class method)

W

 	
 	Wait (class in joeflow.tasks.machine)

 	
 	Workflow (class in joeflow.models)

 _static/comment-bright.png

_images/pexels-photo-1020325.jpeg

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 joeflow

 		
 Tutorial

 		
 Writing your first Workflow

 		
 Creating templates

 		
 Testing your workflow

 		
 Core Components

 		
 Workflow

 		
 Task

 		
 Edges

 		
 Advanced Workflow API

 		
 Tasks

 		
 Human

 		
 Generic human tasks

 		
 Machine

 		
 Return values

 		
 Exceptions

 		
 Generic machine tasks

 		
 Settings

 		
 Management Commands

 		
 render_workflow_graph

 		
 URLs

_static/up-pressed.png

_static/up.png

_static/plus.png

